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J. Phys. A : Gen. Phys., Vol. 5. February 1972. Printed in Great Britain 

Relating the classical and quantal theories of angular momentum 
and spin 

A NORCLIFFE 
Department of Physics, University of Stirling, Stirling, UK 

MS received 27 July 1971 

Abstract. The classical and quantal theories of angular momentum and spin are related 
using the spherical top as a model. The quantum mechanical spectral operator kernel of the 
spherical top is evaluated and expressed exactly as a sum over classical paths of terms 
containing the classical action. A relation between corresponding values of the classical 
and quantal angular momentum is obtained which holds for all values of the angular 
momentum quantum number j .  

1. Introduction 

The properties of angular momentum and spin can be obtained from the commutation 
relations satisfied by the components of the angular momentum and the usual J i  
operators. The treatment of angular momentum in this elegant way unfortunately has 
little physical content. 

The treatment of angular momentum in terms of rotational coordinates, although 
being more physical, is unsatisfactory in that the wavefunctions for half integer values 
of . j  are double valued. 

Recently an alternative treatment of spin in terms of rotational coordinates has been 
given by Schulman (1968) who approaches the subject by path integration. The reasons 
given by Schulman for considering spin in this way were that, firstly, Feynman and 
Hibbs (1965) had commented on the existing inability to incorporate into nonrelativistic 
path integral theories the very important concept of spin ; and secondly Schulman felt 
that spin was basically a property of rotations anyway that could be treated in terms of 
rotational or internal spin coordinates as opposed to the rather formal spinor wave- 
functions. 

Because of the relevance of Schulman’s work to this present study we briefly outline 
the important features of his paper. His model for spin is a spherically symmetric top 
and by path integration Schulman obtains the quantum mechanical evolution operator 
kernel or propagator of this system. This propagator propagates all spins corresponding 
to j = 0, 5, 1,. . . etc, and the recovery of the usual Pauli spinors can be achieved by 
projection to a specific spin subspace. Finally, the propagator, rather surprisingly, is 
expressible solely as a sum over classical paths. 

Based as it is on a classical model this treatment certainly lends physical content to 
the theory of spin and indeed to angular momentum in general. Further, since only the 
classical paths occur in the theory, it would appear that here, through the propagator 
of the spherical top, was a direct way of relating the corresponding classical and quantum 
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mechanical theories of angular momentum and spin. However, as a means of relating 
the two theories, this particular method is not as satisfactory as it might seem at first 
sight. The quantum mechanical propagator is a function of the time of propagation z 
and in accordance with the uncertainty principle, if t is known then all corresponding 
energies of propagation are likely. This is why Schulman’s propagator propagates all 
spins and why we cannot simply deal with spin 3 or some other single value. 

In the classical theory, the time of propagation of each classical path is fixed and 
consequently the energy of rotation of the top is different along each trajectory (which 
varies in length). Thus the propagator, expressed as a sum over classical paths, involves 
not one particular value of the classical angular momentum, but infinitely many values. 
Instead of relating a particular value of the classical angular momentum to a given 
quantum mechanical value, the propagator relates a distribution of classical values to a 
distribution of discrete quantal values. 

In the present paper we again propose to relate the two theories of total angular 
momentum using the spherical top as a model, but this time in such a way as to be able 
to relate directly corresponding values of the classical and quantal angular momentum. 
Our approach will be time independent and instead of evaluating the propagator we 
shall obtain its time independent analogue, which is the kernel of the spectral operator 
S(E - H ) .  This operator has been discussed in general terms by Norcliffe and Percival 
(1968a) and a time independent path integral approach to quantum mechanics through 
this operator has been given by Garrod (1966). We do not propose to obtain the spectral 
operator kernel by path integration since there are easier ways of doing this. We shall 
instead evaluate the kernel first by the standard technique of summing over the stationary 
states of the spherical top and then show that it is expressible exactly as a sum over 
classical paths, thus providing an identity between the classical and quantal theories. 
By way of this identity we shall then be able to relate the corresponding values of the 
classical and quantal angular momentum for all possible values of j .  

The motivation for this particular study stems from the widely held view 
(eg Biedenharn and Van Dam 1965) that classical considerations are possibly deeper than 
is immediately evident in theories of spin and angular momentum. In several respects 
this has already been shown to be the case by Schulman; but we feel that a time in- 
dependent approach is more appropriate. 

Our results explain the success of Lande’s empirical formula (eg Biedenharn and 
Van Dam 1965, p 2) 

(1) 

which he used to good effect prior to wave mechanics in studying the anomalous Zeeman 
effect, and also throw light on the replacement of I ( / +  1) by ( 1 + * ) 2  in WKB theories 
(eg Kramers 1926, Langer 1937). Further, we show that spin (j = j) has its classical 
counterpart in a spherically symmetric top whose classical angular momentum is h. 

.2 
~ c ~ a w c a i  * jci + 1)quantal 

2. The spherical top as a model for angular momentum 

In this section we put forward the reasons for choosing the spherical top as a model for 
total angular momentum. 

In classical mechanics if the angular momentum is a constant of the motion then the 
Hamiltonian of the system is symmetric with respect to rotations about the origin of 
coordinates. The spherical top Hamiltonian as we shall show is invariant with respect 
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to rotations about any axis through its centre of mass and hence in classical mechanics 
the spherical top is a natural choice as a model for angular momentum. 

The connection between total angular momentum and the rotation of rigid bodies 
in quantum mechanics is well known (eg Casimir 1931) and in terms of the Euler angles 
(see figure l), which specify the rotation of a rigid body, the square of the total angular 
momentum operator J2 may be expressed as follows (eg Edmonds 1960, p 65, Brink and 
Satchler 1962, p 27) 

From a quantum mechanical point of view, the spherical top is again an ideal model 
for angular momentum because apart from a multiplicative constant of 1/21, 1 being the 
moment of inertia of the top about any axis through its centre of mass, the Hamiltonian 
operator is the same as the expression for the JZ operator, and the eigenfunctions of the 
J2 operator are thus solutions of the spherical top wave equation. 

Figure 1. The Euler angles. 

However the following points must be noted. The eigenfunctions of the J2 operator 
for half integer values of j (see for example Bopp and Haag 1950) are double valued 
and as corresponding wavefunctions of the top they are regarded as unphysical and tend 
to be discarded (eg Brink and Satchler 1962). This is why half integer states of angular 
momentum, out of context of any physical system, are represented by spinor wave- 
functions. Fortunately in this paper we shall not have need to deal directly with double 
valued wavefunctions, and the problem will not arise. Before going on to evaluate the 
kernel of the spherical top spectral operator we first consider the classical mechanics of 
the top. 

3. Classical mechanics of the spherical top 

Since we will be concerned with definite values of the angular momentum the classical 
mechanics of the spherical top is best considered without any explicit reference to time. 
This may be done by formulating and solving the time independent Hamilton-Jacobi 
equation, the solution of which is, to within an additive constant, the time independent 
action function (Goldstein 1950). In this section we shall evaluate directly the classical 
action of the top as it rotates between two configurations A and B say. 
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We can simplify the problem by regarding the rotation as being about a particular 
axis ii, through a given angle w. This is possible in classical mechanics, but not of course 
in quantum mechanics. Because of spherical symmetry the angular momentum vector 
K and the axis of rotation are in  the same direction. In terms of o and its derivative the 
classical Lagrangian function is given by 

L(w, 0, t )  = + I C Y  ( ? I  

and the generalized momentum P,, conjugate to o is 

where k = 1 ~ 1 .  In terms of P ,  and o the Hamiltonian function is 

P i  k 2  
H(P, ,w)  = - = - 

21 21 

which is invariant under rotations and hence constant. The value of the time independent 
action (not to be confused with JL(w,  0, t )  dt) is 

S = lABP,dm = k dw = kT J: 
where r is the net angle of rotation (about i i )  between the two configurations A(r,fi,,;.,) 
and B(@y). 

Relating r to the Euler angles is easily achieved. Suppose the rotation (rpy) 
is represented by a matrix R, and ( ~ r ~ / ? ~ y ~ )  by Ro. Then the net rotation T is produced 
by the rotation RR; and it is well known (eg Plumpton and Chirgwin 1966, p 6) that 

( 7 )  1 + 2 cos r = Tr(RR, ' )  

which results in the relation 

= COS +(p - pol COS kt - y o )  COS $3 - x,,) 

-cos +(/? + P o )  sin +(y - y o )  sin +(a - yo). (8)  

The value of the action given by equation (6) is that for the most direct (shortest) path 
from A to B and clearly another possible path from A to B is one where the top returns 
to B after c complete revolutions. The angle turned through in this case is r + 2nc, and 
the corresponding value of the action is k(T + 2nc). The next shortest path from A to B 
(see figure 2) is that where the top turns through an angle 2rc - radians about 4, and 
rotations through an angle of 2nc - also bring the top back to B.  The action for these 
paths is then k(27cc - I-). Thus if c is an integer ranging from - x to x it can be used to 
label all the possible paths between A and B, and the values of the classical action 
S,(k, T) along these paths are then given by 

S J ~ ,  r) = kl2nc + rj c = 0, 2 1 ,  _+2  , . . . .  (9) 

It should be noted that along each of the paths the angular momentum of the top is 
the same. This is not the case in the time dependent theory given for example by 
Schulman. 
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A n 

Axis of rotation 

Spherical top 

Figure 2. Diagram illustrating two possible classical paths between the positions A and B 
of the spherical top. 

4. Quantum mechanical theory and the spectral operator 

Expressed as a sum over quantum mechanical states (Norcliffe and Percival 1968a) the 
spectral operator for a discrete spectrum is given by 

I ,  = 6 ( E - H )  = 1 J(E-E,)P, 
V 

where P, are the projection operators onto the levels v which may be degenerate. The 
completeness relation of the states is expressed by the requirement 

1 P" = z. 

The kernel of the spectral operator is a function of the energy E and unless E is equal to 
one of the values E ,  the value of the kernel is thus zero. 

The wavefunctions of the top that correspond to integer values of the total angular 
momentum are single valued and any single valued function of the Euler angles can be 
expressed as a sum over these states. Because they are complete we may construct an 
operator Zz, say, which is nonzero only for values of E equal to j ( j  + l)h2/2Z where j is an 
integer. We shall refer to this operator as the spectral operator for integer spins, and we 
shall obtain the kernel of this operator to begin with. The spectral operator kernel for 
half integer spins will then be obtained directly from Zz without summing over half 
integer values of j .  

The energy levels of the spherical top are degenerate with respect to m and m' which 
label the eigenvalues of the operators J ,  and Jz, (J , ,  plays the role of J ,  in the body-fixed 
frame), and the normalized single valued wavefunctions are (Schulman 1968) 

The 9 are the representation matrices of the rotation group. The kernel of the projection 
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operator Pj onto the level j is thus 

- 2j + 1 sin(j + +)I- -- 
8n2 sin 1-12 

The spectral operator kernel IEf(r) for integer values of j is thus given by 
where I- is the angle defined by equation (8). 

(13) 

We express the energy E as ( k 2  - h2/4)/2Z, where k is a continuous variable greater than 
or equal to h/2 (later to be identified with the magnitude of the classical angular momen- 
tum) and write 

k2  - h2/4 j ( j  + l )h2]  2j+l sin(j ++)I- 
21 8n2 sin 1-12 ' 

Using the properties of the Dirac delta function (Dirac 1958, p 60) and noting that k is 
positive, we have 

Using now the identity in Lighthill (1960, p 68) we may re-express this infinite sum in an 
alternative way to give 

cos2n --- c (," :) c(k)Z sin kT/h 
= - 4n2h2 sin 1-12 z:(r) = f 

where c ( k )  = 0 if k < 0 and 1 otherwise. 

may be written as 
This expression for 1: (I-) is now in the form of a classical path sum and by equation (9) 

(18) 
Sc(k, r) I:(r) = 1 p ( I - ) p 2 d + ( c )  sin- 

C ii 

where 
12 

D(T)  = 
1 

16n4h4 sin2r/2 

and d + ( c ) ,  the phase associated with each path, is given by 

( - l)clcl d+(C) = -. 
C 
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To obtain I;(r), the spectral operator kernel for half integer values of j ,  we simply 
add together the classical path contributions with different phases given by 

CI d-(c) = I_ 
C 

so that 

To check that this is the desired operator kernel we note that 

(234 
j =  1/2 ,3 /2 ,  ... 

as required. Ik(r), the spectral operator kernel for all values of j ,  is the sum of Iz(r) 
and I;(T) and is thus expressible solely as a sum over classical paths 

This equation, expressing as it does the spectral operator kernel of the spherical top 
exactly as a sum over classical paths, thus relates directly the corresponding classical 
and quantal theories of angular momentum and spin. 

5. Relating corresponding values of the angular momentum 

If follows from equations (16) and (23c) together with the properties of the Dirac delta 
function that I k ( r ) ,  as given in equation (24), is nonzero only for those values of k given by 

k = ( j + i ) h  j = O , + , l ,  . . . .  (25)  

k however is just the magnitude of the classical angular momentum vector K and 
equation (25) thus specifies the correct quantization of classical angular momentum 
consistent with the quantum mechanics. Equation (25) holds for all values of j and is a 
correspondence identity for angular momentum (see also Norcliffe and Percival 1968b, 
Norcliffe et af 1969a, 1969b and 1971 for a discussion of the correspondence identities 
associated with the Coulomb potential). 

The quantization of classical angular momentum is due to the interference of the 
classical path contributions in equation (24). For values of k given by equation (25) the 
contributions add constructively, whilst for other values they add destructively. The 
interference is illustrated in figure 3 where a partial classical path sum over nine paths 
of each of ':(I-) and 1k.r) is plotted for r = 0. 
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Figure 3. Partial sum over nine paths of ( ~ ( 0 ) .  I J O )  against k .  The full curve i b  h ( 0 ) :  
the dotted curve represents I l ( 0 )  and the broken curve is the curve representing fL(0) .  

6. Discussion 

The aim of this paper has been to relate in as direct a way as possible the classical and 
quantal theories of total angular momentum, and by expressing the kernel of the spherical 
top spectral operator exactly as a sum over classical paths we feel that we have achieved 
this. Our results together with Schulman’s classical path expression for the propagator 
support the view that classical considerations are indeed deeper than is immediately 
evident in the quantum mechanical theory of angular momentum and spin. 

We have not given a path integral method of evaluating the spectral operator kernel. 
but our results show that if such a method were adopted then only the classical paths 
would contribute. The reasons for not using the method of path integration arise out of 
the difficulty offormulating such a method in any coordinate system other than rectangu- 
lar Cartesians (eg Edwards and Gulyaev 1964, Peak and Inomata 1969 in the case of 
polar coordinates and Arthurs 1970 for general curvilinear coordinates). Schulman 
assumed correctly that only the classical paths would be important in evaluating the 
propagator and used the phase integral approximation as given by De Witt (1957). 
taking into account the curvature of the Euler angle space. To modify existing time 
independent phase integral approximation methods (eg Gutzwiller 1967) to take care of 
curvature did not seem worthwhile since there is no a priori reason to suppose that they 
should give the correct form for the spectral operator kernel. 

The curvature of the Euler angle space is responsible for the corresponding classical 
and quantum mechanical energies of rotation of the spherical top being different. I t  is 
the classical energy k2/21 = ( j  + 9)’h2/21 which corresponds to the quantal energy 
E j  = j ( j +  l)h2/21. This correspondence between energies holds for all values of j by 
virtue of equation (25) and the success of Lande’s formula is due directly to this fact. In 
the light of the present results a better relationship would appear to be 

(26) 

but even though Lande’s formula does not contain the term of 9 it is of no consequence 
because although the possible quantized values of the classical angular momentum (see 

( j  + 4Xassical =- j ( j  + 1) quantal 
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figure 3) are hJ2, h, 3h/2,. . . etc, Lande assumed them to be 0, h/2, h, . . . , thus accounting, 
unknowingly for the f term. It is important to remember that Lande's expression for the 
gfactor, which utilizes equation (1) was only to be confirmed later by quantum mechanics. 

Equation (26) with j replaced by 1 the orbital angular momentum quantum number, 
is not unfamiliar and is well known in WKB theories of radial motion (eg Kramers 1926, 
Langer 1937, Froman and Froman 1965 etc). The present work unfortunately cannot be 
used to prove the validity of such a formula for all values of 1 since the model for orbital 
angular momentum is not the spherical top but the two-particle rigid rotor 
(eg Buckingham 1961, p 97). The replacement of / ( I +  1) by is used even for low 
quantum numbers in WKB theories, but its success seems to depend largely on the type 
of potential in question and Engelke and Beckel (1970) have shown that this correction 
is by no means unique. Nevertheless for total angular momentum equation (26) is exact 
for all values of j and in particular for j = 3 we have the important result that spin, a 
strictly quantum mechanical effect, can be discussed in terms of a classical spherically 
symmetric top of angular momentum h. 

Finally we comment briefly on the treatment of spin and angular momentum in 
terms of sums over classical paths. The problem of dealing with angular momentum by 
means of rotational coordinates has always been the unphysical nature of the boundary 
condition, namely double-valuedness, that must be imposed on the angular momentum 
wavefunctions to produce the half integer values of j .  The usual boundary condition of 
single-valuedness gives only integer values. In the present work the role of boundary 
conditions is played by the phase factors d'(c) that occur in the classical path expansions 
of IZ(r). With d + ( c )  the sum over paths yields integer values of j ,  and with d- (c )  we 
get the half integer values. Phase factors are an accepted feature of path integral theories 
(eg Gutzwiller 1967, Schulman 1968 and Dowker 1970) and there is no reason to suppose 
that the phases d- (c )  should be less acceptable than d+(c) .  In other words, by means of 
sums over classical paths, both integer and half integer values of j arise naturally out of 
the theory. 
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